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PREFACE

This Memorandum is a part of continuing RAND studies on the be-

havior of bodies re-entering the atmosphere at high velocities. The

results should be of interest to those engaged in predicting, under-

standing, and evaluating the characteristics of hypersonic trails in

the atmosphere.
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An attempt is made to develop a theory for the calculation of

the growth of the turbulent wake formed behind a blunt body moving

at hypersonic speeds. The classical, semiempirical subsonic-wake

theory based on the notion of eddy diffusivity is used throughout,

duly modified to account for compressibility effects. The gas is

assumed to be in thermodynamic equilibrium. A number of suitable

approximations are made, resulting in a closed-form solution.

Several plots showing the growth of the width of the turbulent

core downstream are presented for different Mach numbers and differ-

ent values of the enthalpy prevailing at the center of the "neck"

of the wake. It is found that compressibility effects for blunt

bodies are limited in general up to about 1000 diameters downstream.

Beyond this distance the wake grows with the 1/3 power rule, like a

subsonic incompressible wake, with no dependence on the Mach number.

The fundamental equations are also written for sharp bodies for

which the boundary-layer effects are important. It is found that the

enthalpy decay along the axis downstream is faster for thin bodies

than it is for blunted ones.
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A - excess amplitude of turbulent-enthalpy profile, defined in
Eq. (19)

a - numerical constant used in Eqs. (2) and (10)

B - parabolic "width" of turbulent-enthalpy profile, defined
in Eq. (20)

CD = drag coefficient

d - body diameter

f - velocity ratio defined in Eq. (5)

H - nondimensional enthalpy, defined in Eq. (7)

h - enthalpy

hf - hf/h

N - free-stream Mach number

p - pressure

t = Howarth variable in the radial direction, defined in Eq. (4)

R = nondimensional co-ordinate describing bow shock wave

RT - turbulent variable in the radial direction, defined in Eq. (14)

r - radial co-ordinate

r - nose radius

r - r/r 0

U - free-stream velocity

u - velocity in the x direction

x - co-ordinate along the direction of the free stream

x0 distance downstream at which the pressure is ambient for
every streamline, given by Eq. (1)

x = x/d

Y - ratio of specific heats, c p/cv
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L " numerical constant used in Sq. (2)

- compressible eddy diffusivity defined in Eq. (12)

- eddy diffusivity defined in Eq. (15)

- numerical coefficient used for the definition of the eddy
diffusivity

- fraction of the stagnation enthalpy calculated at the "heck"
of the turbulent core; see Eq. (35)

P - mass density

SUBSCLUTS

f - the turbulent front

i - an initial condition

w M the free stream
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I. INTRODUCTION

It is a matter of common observation that the motion of bodies

in fluids produces a trail which very often persists over distances

many times the characteristic length of the body. Theoretical and

experimental studies consist primarily of descriptions of the distri-

bution of momentum defect downstream. At low speeds this defect is

associated with the viscous layer only. At supersonic speeds, how-

ever, the major part of the momentum defect for a blunt object is due

to the irreversibility created by the shock wave. The maximzm irre-

versibility (and hence the maximum defect) for an axisymmetric body

appears on the axis parallel to the flow where the shock is normal,

with smaller irreversibilities and hence smaller momentum defects,

corresponding to streamlines located farther away from the axis.

The structure of the flow for a spherical object moving at hyper-

sonic speeds can be seen in Fig. 1. The fluid is compressed through

the bow shock wave and expanded isentropically until it is recompressed

again by the so-called trailing shock. Then it expands again until

all streamlines reach the ambient pressure at a distance denoted by

x - x .. This distance can be calculated as indicated in Ref. 1 by

using the blast-wave theory, although this theory allows only for the

bow shock wave and neglects the details of the flow from the bow shock

to the point x - xo  The latter has been shown in Refs. 1 and 2 to

create a small amount of irreversibility when compared with the bow

shock wave, so that if one is interested in calculating the flow at

a distance far enough downstream, its influence can be neglected in

a first approximation. In nondimensional terms, the distance x° is

given in Ref. 1 as

d 9

In the above, d is the diameter of the sphere and M is the free-stream

Also private communication from L. Hromas, Space Technology
Laboratories.
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Mach number. Feldman, in Ref. 2, was the first to analyze the flow

of a hypersonic trail around a blunt body. By standard numerical

techniques he calculated the flow around a hemisphere followed by a

cylinder by assuming inviscid flow of a real gas in thermodynamic

equilibrium. At the cross section x - xo he assumed that the enthalpy

profile is given by a Gaussian distribution, the width of which he ob-

tained by a best fit of his numerical results. From there on he as-

sumed that further cooling occurred by the mechanism of heat conduc-

tion only. He was thus able to determine all thermodynamic parameters,

including electron concentration, up to the point where the ambient

state is reached.

In Ref. 1 it was shown that the inviscid enthalpy profile at the

cross section x - x0 can be approximated analytically in a closed form

by assuming a parabolic bow shock wave as given by the cylindrical-

blast-wave theory. The result is

hx (R)

h (0) ( 4 (R2Xo 0 + eaCD/

In the above, Rs is the nondimensional radius (with respect to the
radius of the nose r ) determining a stream tube entering the bow

shock wave (see Fig. 1) and is related to the nondimensional radius

r I r/r0 of the same stream tube at the cross section x - x0 by the

equation of mass continuity

P.UCRJdR. a P u xdr (3)
X0 X0

Feldman indicated from his numerical calculations that the ratio

Uxo O O* 0.8, so in this sense the radius R is almost equivalent to

the Howarth variable R, given as

R2 (4)
5
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where

f a uxo/U (5)

In Appendix A it is shown that f is given approximately in a

closed form by the expression

f 6 .1(6)

For Mach numbers between 15 and 35, f varies between 0.77 and 0.83,

and it is thus seen that the Mach-number dependence is indeed very

weak. From the condition that the stagnation enthalpy remains con-

stant everywhere in the inviscid flow field, we obtain

h (0)
- U - f)x

0 h + 1 (7)

For the quantity f, Eq. (6) could be substituted above, thus obtain-

ing Eq. (A-2) again; however, if we enter the value f - 0.8, the re-

sult is a good approximation for Mach numbers of 10 and above to the

exact values that can be obtained by using real-gas effects. Also,

by neglecting unity compared to the term containing the Mach number

in Eq. (7), we obtain

H -j M2 (8)

The parameter a in Eq. (2) and the drag coefficient CD  determine the
shape of the shock wave from blast-wave theory to be

Rs  = (aCD) 1/4 a- (9)
0

This coefficient accounts only for the pressure drag.
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The parameter YL is an effective cp/cv ratio, which as shown in Ref. 1

has the approximate value of 1.2. The value of a is approximately

equal to 2.6.

In Ref. I it was also shown that a good approximation of Eq. (2)

is

h (R)
x. H H (1)

1+ 4f2R2 R2

aYLCD ED

In the above, the values of f 0.8, a - 2.6, and yL a 1.2 have been

used. This relation is in good agreement with numerical results ob-

tained through the method of characteristics in Refs. 2 and 3. A

comparison is shown in Fig. 2, where the exact value for H was used

in Eq. (10) rather than the approximation of Eq. (8).

Further inspection of Fig. 1 shows that the trailing shock is

formed around a "neck" which presumably contains the mass flowing

through the boundary layer over the sphere. From the point of view
of total momentum defect (and hence drag) contained in the neck, sim-
ple calculations by Lees and Hromas show that for a typical hypersonic

flight this amount is very small compared with the total drag. (3

They point out that this drag represents the sum of the skin-friction

drag on the body and the momentum defect associated with the pressure

rise across the trailing shock at the neck. Their estimate of these

two contributions at the neck is given for the cylindrical case as

(CD)neck (11)

This result should be maltiplied by v/ for the axisymmetric case.

The Reynolds number is based on the diameter and free-stream condi-

tions.

Turbulence is always associated with regions of high vorticity,
which in the present case is the free shear layer formed after
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separation occurs. Although conclusive experimental study of the so-

called "near wake" region is still lacking,* we shall assume that

turbulence is present in the region near the neck, engulfing the fluid

mass downstream that has gone over the blunt body through the inviscid

part of the wake. The "engulfing" mechanism for the first few diam-

eters downstream of the neck will be dictated solely by expansion,

since just behind the trailing shock the temperature and pressure are

very high. As the pressure drops to nearly ambient, turbulent diffu-

sion will become predominant--swallowing up more and more momentum and

finally spreading to a point where the whole momentum deficiency is

associated with turbulence.

A calculation based on the above model needs the following a
priori knowledge: (a) the position and thickness (in terms of mass,

momentum, and energy) of the neck, (b) pressure profiles downstream

of the neck, and (c) a model for the estimation of the rate of energy

diffusion due to turbulence. The first two items presume the solution

of the near-wake problem with an answer describing the interaction of

the trailing shock with the free shear layer, a rather difficult and

still unsolved problem. As a rough approximation one may obtain some

information for the first two items by solving the inviscid problem

over a sphere followed by a cone, which takes the place of the shear

layer, and then a cylinder fitted at the neck. Shadowgraph pictures

can be used for guidance in prescribing the above geometry. Such cal-

culations are reported in Ref. 3. For item (c) the only choice of-

fered is the extension of the subsonic eddy-diffusivity theories to

the compressible case. Such an extension is provided in Refs. 3 and

5. Both references present an equivalent eddy diffusivity 8 given in
terms of the incompressible eddy diffusivity e as

2

8- E 1'+' (12)

Some preliminary results are reported in Ref. 4.
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In the above, p(O) indicates the mass density at the axis, and Pf the

density at the "front" of the turbulent core (see Fig. 1); j takes

the value 0 for the two-dimensional case and 1 for the axisymmetric.

At this point let it be stated that there is no rigorous theore-

tical understanding even of the rudiments of shear turbulence; what

has been accomplished over so many years of study is the replacement

of our ignorance by one or more "factors of adjustment" which can be

conveniently selected to fit the experiments. For instance, for tur-

bulent flow in a pipe we have the numerical coefficient of proportion-

ality yielding the linear law of variation of the mixing length,

whereas for wakes we select the numerical value of a constant of pro-

portionality yielding e, a number akin to a Reynolds number. Now e

(as will be seen later) is also proportional to the drag coefficient,

and in the problem at hand, the drag associated with the turbulent

core is variable in the direction of the stream. It is therefore

suggested in Ref. 3 that experimental evidence should also be used

in deciding between the two extreme cases of a coefficient propor-

tional to a frozen drag (say the one at the neck) or local drag.

From a logical point of view one necessarily concludes that the

artificial mechanisms of eddy diffusivity and mixing length explain

nothing of the true nature of turbulence. In essence they are used

to provide definitions and numerical values for quantities whose in-

trinsic existence can be justified only by the fact that they some-

times provide adequate answers in much wider regions of observation

without additional forcing, although they are adjusted to satisfy the

experimental evidence in a restricted area. From this point of view,

the merit of a semiempirical theory is judged by the degree of uni-

versality of the answer for a minimum number of factors of adjustment.

Bearing this in mind, we will attack the problem at hand by as-

suming that the inviscid-enthalpy profile prevailing in the "laminar

region" is given by Eq. (10). Inside the turbulent core we assume a

parabolic profile extending up to the distance rf characterizing the

turbulent front.

,
In contrast to the subsonic case in which the turbulent core

encompasses all the drag.
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In the limit r -. 0, where the energy equation will be satisfied

in detail along the axis, a parabolic profile is the only one satis-

fying this equation. In the radial direction, energy will be con-

served in bulk between r - 0 and r - - in the fashion of the well-

known boundary-layer integral methods. We will compute eddy diffu-

sivity through Eq. (12), using for e its incompressible definition, (6)

and bearing in mind that this definition is strictly valid only in

the neighborhood of the axis of symmetry.

In every physical detail the above is the physical model adopted

by Lees and Hromas;( 3 ) however, the mathematical model and approxi-

mations of the present work are different, yielding a closed-form

solution rather than a solution necessitating extensive numerical

calculations.
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11. ANALYSIS MW iUULTS FOR THE CASe OF BLUNT BODIE

The equation of conservation of energy for an axisyeuietric wake

is

Pu~ 'r L';(per ) (13)

Here again e is the Boussinesq turbulent eddy diffusivity. For the

velocity u, we set

u a fu.

where f is between 0.8 and 1.0.

In Eq. (13) we have neglected the contribution of the normal ve-

locity component in the convective heat transfer, any cooling due to

pure expansion, and also the contribution due to molecular heat con-

duction. We now define the turbulent Hovarth variable iT from the

transformation

PfRTdPRT - rr(14)

In the above, Pf is the mass density prevailing at the turbulent front.

From the semiempirical wake theory, we set(
6)

.C d (15)lu , -U(o) ] tTf

from the approximate conservation of the stagnation enthalpy, we also

have

h-h(U.- U) %
h 2 2

tjb IU(U.0 - u) (16)



11

Writing the above at r - 0 and r - rf, we have

It-L[u f  u(O)] UG - h(O) - hf (17)

Substitution in Eq. (15) yields (for j - 1)

-~ h, [ho)- hfL (18)
UCd - ( 1 + ) U2 RTf [L

Now let the turbulent profile, assumd to be parabolic, be expressed

as an excess of the enthalpy at the turbulent front by the equation

h - (19)

where

(I) 1 Tf) (20)

In the neighborhood of the axis we can set

2 2
Pf - Pr (21)

We new use Eqs. (19) and (21) in Eq. (18) to calculate e at the axis,
since the equation of energy conservation will be satisfied in detail

only there. The result is

e - Kb.["2~ 1/2 -- (2
U.d ( IOj ) 2  A(x)rf (22)2. U 11 ,0i
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The above was first derived in Ref. 3. At the axis, Eq. (13) yields,

after introduction of the variable R, the diffusivity 4, and the

approximation of Eq. (21), the following:

- 4~~ (23)

The factor 4 in Eq. (23) enters because x is nendimensionalized with

respect to the nose diameter d, whereas R is nendimensionalized with

respect to ro.

The quantity in brackets above can be calculated easily from

Eqs. (19) and (20). The result is

2-(x) 6 (24)

In the neighborhood of r - 0 we have*

P2 f2 (25)
Sfi

and hence

-U I 1I-e (26)
fU6d P, 2

if

The left-hand side of this equation is now calculated at r - 0 with

the help of Eq. (19)

As shown in Ref. 3 from a conservation-of-mass argument, we
have R f - Of/PW)Rf 2 (Y - I2Df /8(l + H). If we use Eq. (8),

the quantity in the right-hand side is approximately equal to
(3/4)CDf , a very small quantity compared with the other terms except
very close to the neck.
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/h (L f + aAa dR,
dR (27)\RfV~ / 81  f

Appendix B shows that it is legitimate to neglect the reduction of

the inviscid enthalpy at the front due to the mechanism of molecular

conduction, so that from Eq. (10) we obtain

-[ 2HR BA(R) dR
= D (1 2 + d 2

Before we can solve this equation for Rf, we need to evaluate

the function A( f). This is done in Appendix C, where a calculation

is made of the amount of energy (or equivalent drag in terms of the

local drag coefficient CD ) contained within the turbulent core at

a given station x. The ttal amount of energy (or total amount of

drag) between r = 0 and r - - remains, of course, constant along x,

so that the difference in the drag of the turbulent core at two dif-

ferent axial stations is exactly equal to the difference of the energy

(or drag) contained by the inviscid-energy profiles at the same two
stations. After some approximations in Appendix C, we obtain

Eq. (C-7), which for convenience is combined here with Eq. (C-4).

CD (Y - 1)M2

A(R) ).
R2 2 2(29)Rf .U + f

CDfi CD

We now use in Eq. (24) the expressions for A(Rf) and e from Eqs. (29)

and (22). After some algebra we find

* Uniform pressure is assumed in this argument.
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I + 4k U6C C.D D D )J 2

CtCD\2 \ Dfi

(30)

We now calculate the density ratio P(0)/P. by assuming an ideal gas

and using Eqs. (10)* and (29)

P" k U • P" 1 + L + A(Rf pO
p (o) h, p(O) ( h.( o)

+(O 2?._.L.L. (12 ! PO

{D D (31)

Substitution of the above in Eq. (30) yields, after some rearrange-

ment and integration

R2 R2 2

D D D dl

DC

-- K ---- di + (const) (32)

This equation gives the growth of the turbulent core in the lowarth

In this step we add one to the right-hand side of Sq. (10) in
order to make it an exact equation as R .. , since the density ratio
must be accurate for both small and large R.
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plane. In Appendix D, by using the ideal gas law, we calculate Rf

as a function of the physical co-ordinate rf after using Eq. (10).

The result, repeated here, is

f p(O) FP f +CD l(I+CD3)

Now the function rf(x) could be calculated if we knew the quantities

p(O)/pC, the constant of integration, K , and Rfi /CDfi.

As has been mentioned before, the pressure ratio p(0)/p. can

only be given by solving exactly the interaction problem of the trail-

ing shock with the wake core. Since such a solution is not available,
the approximations of Ref. 3 described in the Introduction of this

Memorandum are appropriate. The constant of integration appearing in

Eq. (32) can be set equal to a value giving the position of the neck

and its thickness as observed in experiments; this was also the pro-

cedure adopted in Ref. 3. It is obvious that the value of this con-

stant has an influence only a very few diameters downstream from the

neck.

The value of K is again offered as an additional arbitrary param-

eter, but the remarkable thing is (as mentioned in Ref. 3) that ex-

perimental evidence suggests the same value used in subsonic wakes.

This value is approximately equal to 0.035.

Finally, an estimate must be made of the quantity Rfi 2/CDfi

From Eq. (29), recalling the definition for A(x) from Eq. (19), we

find

R2

CD h(O)- h
h.

For the ratio h fi/h.wemay use the value hx A., given by Eq. (10),

since initially we are very close to the axis.
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An exact computation of the ratio hi(O)/h. is not possible, since

the near-wake problem remains unsolved. However, the physical de-

scription of Ref. 7 could be used as a guide. If we assume that the

"dividing streamline" brings the fluid to rest just at the center of

the neck, the enthalpy for an insulated body will be approximately

equal to the stagnation enthalpy (for Prandtl number of order one).

If heat transfer is allowed at the body, then this enthalpy will be

smaller.

Now let X be the fraction of the stagnation enthalpy to which

hi(0)/h. is equal. For the reason explained above we shall treat X

as an additional free parameter. The ratio R fi2/CDf i depends on X

gnl and can be calculated from Eq. (34) after use is made of Eq. (8):

1L. 1 (35)
CD

fi 2 6

For the values of R fi2/CDf i - 3, 4, 6, 8, 10, and 12, the corre-

spending X's a 1.0, 0.83, 0.67, 0.58, 0.53, and 0.50.

We proceed now to examine the asymptotic character of Eq. (32)

for small and large distances downstream. It is easy to establish

that for small values of Kf, Eq. (32) gives

3 R 2 72KC

R [( LY I4 7) + ~ )~ H) dx + (conat) (36)

If we approximate Eq. (33) for small Rf's and use Eqs. (8) and (35),

the above becomes

_2KC D_ 2( 2  6 i"" d + (const) (37)

*The stagnation enthalpy is equal to hst/h. - (y - 1)M2/2 - 3H.
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At high values of Rf, when the influence of the parameter Rf2/CDfi

ceases to exist, Eq. (32) becomes

3 12KC
rf - D (38)f (LI f)f

2

It is thus concluded that the value of R fi2/CDfi and H (and hence

the Mach number) is only significant during the initial period of the

process. Very far downstream, only the drag CD (essentially equal to

the total drag, since CDfi is so small) affects the growth of the

wake, exactly as in the subsonic case. For all the cases studied,

this distance is of the order of 1000 diameters downstream. In a

log-log presentation, the straight line of Eq. (37) can assume a

higher or lower position relative to Eq. (38). The position will be

higher at the higher Mach numbers and higher values of X (no heat-

transfer effects), as one would expect on physical grounds.

The function rf( x, Rfi2 CD fi) for M - 8.5 is plotted in Fig. 3

for the several values of X, along with the experimental data of

Ref. 8. It is seen that the influence of the factor X is limited

at high x, and certainly an exact value for X or R 2 cannot be

decided from the experiments, since the scatter is high at the smaller

xs where the influence of X is stronger. For Fig. 3, the constant

of integration of Eq. (32) was set equal to zero. Given a set of

values of CDf i and X, the quantity Rfi is fixed, and hence so is fi*

For different values of CD but fixed X's we will have different
Dfi

rfiis, which, however, should physically correspond to the same xi.

The value of xi should be selected from experimental observation, and

the constant of integration accordingly fixed so that the curve goes

through the point rfi, x. This procedure amounts to an appropriate

sliding of the co-ordinate x by a constant (positive or negative)

value. In Fig. 3 the curve obtained in Ref. 3 allowing for pressure

variation is shown, along with another one in which the pressure was
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kept constant everywhere. It should be noted that the curves of

Fig. 3 obtained in Ref. 3 correspond to the value Rfi 2/CDfi  10;

it is seen that the agreement with Eq. (32) is very good.

In Fig. 4 the function rf(x) is shown plotted for different

values for R fi/CDfi and M a 22. Here again the constant of inte-

gration in Eq. (32) is set equal to zero. In the same figure the

curves calculated for constant and variable pressure are shown. (3)

The quantity Rfi2/CDfi was taken in Ref. 3 to be equal to about 11.

It is apparent that even when adjustment is made for the curve cor-

responding to Rfi /C - 10 or 12 to pass through the point x - 7.5
i D fi

and rf - 1.8, the agreement with Ref. 3 is not as good in the present

case as it was for the case 14 - 8.5. It should be noted, however,

that the general trend of the curve rf(x) is the same as the one of

Ref. 3. The numerical differences (certainly small when considering

the scatter of the usual experimental data obtained in the ballistic

range and the crude character of the semiempirical turbulent theory

used) are due to the fact that the function r f(x) depends on the

slopes of both functions hf and A, as can be seen from Eq. (27).

Since both h f and A (Eqs. (10) and (29)) provide inflection points,

differences are to be expected when comparing results with other ana-

lytical representations of these curves, which are in good agreement

in the ordinates but have significant differences in the slopes.

In Fig. 5 a plot similar to Figs. 3 and 4 is shown for Mf - 16.

Observation of Figs. 3, 4, and 5 shows that for small and very

high x the turbulent core (pressure variation apart) grows with the

1/3 power of x according to Eqs. (37) and (38). In Fig. 6 the value

of the quantity fi 2/CD is kept constant (equal to 10), and the

curve rf(x) is plotted for Mach numbers equal to 8.5, 16, and 22.

The pressure has been kept constant, and the constant of integration

of Eq. (32) has been set equal to zero. Note that the influence of

the cooling by expansion is stronger for the high Mach numbers (and

is present also over longer distances downstream).

In Appendix 1, Figs. 2-1 through 1-6 give the function rf(Z) for

several Mach numbers and values of the parameter fi2/CDft.



20

.0

No C

4- U

C Li
0

.0

C.

VI
av

a. CL

0. C.

- oIL
oIon

a 0
aC



21

0
___ ___ ___ ___ ___ _ ___ ___ ___ ___ __ 0

0

£09 0
0

0 g0
20 0

0

oo

0

It)



22

CL 0

0.- .

c E,

oqo d



23

III. ANALYSIS FOR THE CASE OF CONES AND SLENDER BODIES

The basic difference between the case of the turbulent wake be-

hind a blunt body, such as analyzed in the previous section, and that

of a slender one is that in the first geometry, high temperatures are

developed at the stagnation point where the flow comes to rest by

hitting the wall perpendicularly, whereas in the second, high temper-

atures are developed in the boundary layer where the flow comes to

rest through the action of the viscous forces which act parallel to

the wall. In the case of blunt bodies it was found that most of the

momentum deficiency was located in the inviscid flow through the ac-

tion of the shock wave, with high characteristic enthalpies prevail-

ing at the cross section x - x0 equal to about 1/3 the stagnation en-

thalpy (H - (Y - 1)M/6 - H t/3). The distribution of the drag at

the neck was such that CD >> CDf i . Consider now as an extreme the

case of a thin cone. Even at high Mach numbers the oblique shock

wave formed at the tip decelerates the flow very little, and hence

the inviscid enthalpies are very low compared with the enthalpies

prevailing inside the boundary layer or at the neck.

Figure 7 shows schematically the relative position at the neck

of the enthalpy profiles for the viscid and inviscid parts of the two

cases under discussion. The inviscid solutions are for an infinite

thin cone and a hemisphere-cylinder and are modified at the neck by

two parabolic profiles. The case of a blunted cone will lie some-

where between the curves for a pure cone and hemisphere-cylinder. As

pointed out in Ref. 9, the shock wave in the neighborhood of the tip

is given reasonably well by the cylindrical blast-wave theory based

on the curvature of the nose, whereas far from the body the same is

true if the radius of the base is taken into consideration. The re-

gion in between is approximated by a conical shock which allows for

a slight recompressibility zone. The exact shape of the shock wave

is needed for the determination of the enthalpy profile at the cross

section x - xo where the pressure is almost ambient. In the fashion

of Ref. 1 this distribution can be obtained in terms of the shock
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I - Blunt body
I --- Cone

- - --- -Viscous

Inviscid

h

Fig. 7 -Schematic enthalpy distribution at the neck in
the wake of a blunt body and a thin cone

for the same Mach number
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angle 0 by using the regular conditions across the shock wave and ex-

panding isentropically along each different-entropy streamline. This

procedure yields

hIR)(1 - I) M2 sn2~

- 2 M 2 (39)

"Y + YL

where

sin2o [1 + (dR/dx)2]- (40)

The term yL is an effective specific-heat ratio which accounts for

real gas effects. For blunt bodies, yL was found to be approximately

equal to 1.2 in Ref. 1. For thin, slender cones, YL should approach

the value 1.4, since the temperatures for this case are lower by far.

The distance x - x0 is located where the angle of the shock wave be-

comes the Mach angle, or

sin2 1 - (41)
0 1+ 1 H2

(dRs/dX)

Equation (41) is an exact one, valid for both thin and blunt bodies
*

but not for infinite cones.

We now write the energy equation (Eq. (13)) without making spe-

cific substitutions for the functions h f and A. We have

Rf

U r+ dI (/1 th+ A )- dR - -8.cdx (42)
A~ L i (4)(Y - 'M

The term h f can be obtained from Eq. (39) by making I = Rf. On

*A finite cone will have a shock wave bent towards the center
line by virtue of the interaction with the expansion fan.
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the other hand, the expression for A(lf) found in Appendix C needs

no modification except that now the approximation CD >> CDfi is net

valid, and as a consequence Eq. (C-6) must be used. This equation

is reproduced below for continuity after combination with Eq. (29):

A CDf(y- 1)H2  (y- OH 2
2 " 2R f Rf 2( 1 1 )+ Rf

i C D fi C D C D

Equation (42) can now be integrated by using Eqs. (39) and (40) for

the determination of hf, and Eq. (43) for the function A.

Let us now consider as an example the case for which H sin 0 is

a large number in order for the following approximation of Eq. (39)

to be permissible:(see Appendix F for a detailed discussion of this

assumption)

h (Rt)Y
h 2 /k 2y) / -1)+ (dR/dx)-2]

We may neglect for convenience the quantity in the second parenthesis,

so that

1

h (R) 2 '

k h2 1 + (dR/dx). (44)

As in the case of the blunt body let us set

h (R)
xo

0 M1 H (45)

hm [1 (R)-2] yL
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The prime indicates differentiation with respect to the co-ordinate

of the shock wave x, not to be confused with the distance downstream

from the neck over which we study the growth of the turbulent core.

Differentiation of Eqs. (43) and (45) and substitution in Eq. (42)

yield, after some algebra

1 C Rf12( 1 _ ) 2 }2(_+) (1,±)

f" 1)12(1 + 1 2)

X +[ H21/y L + (V 1 )M )+ L dR f

1 1+ (Rs') 2] Rf2i( -1

4 KC D / .d
4 P dx (46)

From the above we see clearly the strong dependence of the growth of

the turbulent core on the second derivative (or curvature) of the

shape of the shock wave.

As a limiting case we further study in some detail the case of a

pure cone in the approximation M2 sin2  >> 1. In this case we set the

factor f 1 1, and from Eq. (4) we see that is is exactly equal to the

Howarth variable Rt. Also, if 0 is the angle of the cone (assumed

small), we have for the shape of the shock

From Eq. (44) we also find
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H ft ('Y [M Y + ) 02/YL
2 2 (48)

Equation (42) becomes

2/y L1/2

fL + Rv-l)H
2

fi C DC CD

- 4PCD.v/ dx (49)

The second expression under the radical on the left-hand sides repre-
senting the inviscid effects, is negligibly small for small * compared
with the third part, which contains the strong viscous effects. We
now integrate Eq. (49) in the limiting case of small x. We distin-
guish the following cases:

A. Let us assume that CD CD w CD.

This is the case of very thin cones (a few degrees half
angle) and small Reynolds numbers. Pressure variation
apart, Eq. (49) yields after integration

..);r C (50)

B. Let CDfi << CD << 1.0.

In this case the denominator of the last part under the
radical is approximated by Rfi2 /CD fi. After integration
we have
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f 12K R + ,3  12/3
CD( -- ~" x ) J (51)

C D2C Dfi CD3/2 (1

%. (y_ 1)M2 CD Ji
For completeness and for the benefit of ready comparison we give be-

low the equivalent result for blunt bodies (Eq. (36)). We assume

(1 + f)12f - 1.0, but we incorporate the pressure term in an average

sense, since for blunt bodies, especially at high Mach numbers, it is

significant.

R22K1/2 R /
a L • (x - xi) + L

M2C C . 3/2
-2 2 -_l)MC D  avg D

(R fi /CD fi) 6

(52)

The decay of the enthalpy along the axis is given by Eq. (19) as

follows:

= + - (Y -2D"
2

{1+ Df(C i  D D

(53)

The equivalent result for a blunt body is

Ui12 C* 1 2L +_ Ij (54)
6 (1 + )C 

C
CDf D

From Eq. (53) we see that in the case of a pure cone the part of the
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enthalpy due to the shock wave is negligibly small compared to the

part due to the viscous effects. From Eq. (54) we see that for small

x the reverse is true for blunt bodies.

We nov examine the quantity R fi 2 /CD f in the case of cones. From

Sq. (34), valid for all cases, we note that hi(o) >> hfi, and hence

Eq. (34) reduces in terms of the parameter X to

R 2
- (55)

CDfi

Bearing the above in mind, we use Eqs. (50), (51), and (55) in Eq. (53),

and Eqs. (35) and (52) in Eq. (54); we find the following:

For the case of a cone with CDf i - CD << l and for small x

U o- . ( " )UM2  (56)

-1)M2Cf

For the case of a cone with CDfi << CD << 1 and for small x

hXoI . Y - l)M
h1 3/2 2/3

(57)

For the case of a blunt body with CDfi << CD 0" 1.0
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+~o 31 - l(Y 1

ho

72(3X 1)2 K 1/2 _-
6 + (X 1avg)+ 3

CD [Pp. ag J(58)

The following conclusions can now be drawn from the above equations:

1. The level of the initial enthalpy at the neck is of the same

order for both blunt and slender bodies, since at the neck there is a

tendency for the stagnation enthalpy to be recovered at the point where

the dividing stream line of the free shear layer crosses the axis.

2. In the cases of cones or blunt bodies, the smaller the amount

of total drag, the higher the decay of the enthalpy, as one would ex-

pect intuitively. This is shown by the fact that the factor which

multiplies (x - x ) in Eqs. (56), (57), and (58) increases with smal-

ler CD.

3. Comparison of Eqs. (57) and (58), representing the most usual

cases in practice, shows that for the same M, X, and CDf i the enthalpy

decays faster for a cone with CD << 1.0. Examination of the quanti-

ties multiplying (x - x i) in Eqs. (57) and (58) shows that their ratio

(for a value X - 1/2) is equal to

. (CD)b L-)
3 (C ) c p(o) ]SD) c avg

where the subscripts b and c stand for the blunt and conical bodies;

the pressure term refers to the blunt case, since for thin cones, cool-

ing by expansion is not significant. One can see that the pressure

cooling for the blunt bodies competes with the reduced drag mechanism

for slender bodies, especially at the high Mach numbers. From Ref. 4
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at 4 = 22 we estimate (p(o)/p ) avg - 10 and we see that even for

(CD)c = 0.1 the quantity multiplying (x - xi) in the conical case will

be a little higher when compared to the blunt case. On the other hand

one can see again by observing Eqs. (57) and (58) that the expression

containing x in the braces in Eq. (57) dominates faster the number to

its left, since this number is smaller than 6 (which corresponds to the

blunt case) as long as X > 1/3.* The above effects are shown qualita-

tively in Fig. 8.

For the case of a blunted cone, the inviscid enthalpy distribution

will look qualitatively as shown in Fig. 9, due to the fact that the

flow suffers a recompression in the conical part of the shock.(9 ) Since

inflection points influence the growth of the turbulent core (see Eq.

(46)), through the second derivative Rs', the growth curve rf W will

contain a number of wiggles depending on the relative position of the

"viscous" parabolic profile with respect to the inviscid one. It might

be instructive to compare a spherically blunted cone and a pure cone

having the same total drag coefficient and flying at the same altitude

and Mach number. For the reasons explained above, we expect the growth

curve rf(x) of the blunted cone to exhibit irregularities due to over-

expansions and recompressions. Eventually, at high distances x, when

the wake behaves like an incompressible one, both curves will tend asymp-

totically toward the same straight line in the log-log representation.

This effect is shown in Fig. 10. On the other hand, it is easy to see

from Eq. (52) that the decay of the enthalpy at the axis will be slower

for the blunted cone in the initial stages than for the pure cone, re-

suming the same rate later on when the compressibility effects are again

absent. Numerical solutions for several conical geometries are reported

in Ref. 12.

This has been tacitly assumed in writing Eq. (35); physically it
means that the enthalpy at the neck must be higher than the enthalpy at
the cross section where the pressure is ambient.
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h(O) Blunt body

h OD

Fig. 8- -Schematic decay of the enthalpy at the axis
of a wake behind a blunt body and a cone for

the same Mach number
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Viscous

I nviscid

Fig. 9- Schematic enthalpy proflie at the neck
in the wake of a blunted cone
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log ?f Cone

log x

Fig.lO- Schematic shape and relative growth of the
turbulent core behind a blunted cone and a

cone of the same total drag coefficient
for the some Mach number
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IV, CONCLUSIONS

An attempt was made to study the growth of the turbulent core in

the wake behind blunt and slender bodies flying at hypersonic speeds.

An exact analysis is not possible because of incomplete understanding

of the following: (a) the flow in the near wake and the neck where

a recompression occurs through the trailing shock; (b) the mechatism

of transition to turbulence; (c) the structure of fully established

turbulent flow in a compressible wake.

In order to compensate for problem (a) above, we treat the quan-

tity of the enthalpy at the center of the neck as an additional param-

eter, and we proceed to study its effect. Problem (b) is more serious.

In the present work we assume that fully established turbulence starts

at the neck. Evidence from ballistic-range experiments (10 ) suggests

that this is the case at the higher densities, whereas at lower den-

sities the transition point (roughly defined by the distance where the

intermittency region appears) could appear many diameters downstream.

The theory presented here can easily be modified to take into account

this last effect, provided that the initial conditions from the point

where the turbulent flow is fully established are known. For problem

(c), the best that can be done is to extend our semiempirical knowledge

on the subsonic wakes to the hypersonic case as suggested in Ref. 3.

Only detailed comparison of many of the quantities predicted by the

theory will show to what extent this procedure is correct. It must

be admitted that the growth of the turbulent core is not the most sen-

sitive indicator (temperature decay would be better), but it appears

that the theory is in good agreement with ballistic-range experiments.

In this work, a number of approximations have been made so that

the final results would be in a closed form, in order that the differ-

ent trends for a great variety of cases could be appreciated without

the need for detailed numerical calculations. On the basis of such a

study, the following conclusions can be drawn:

1. All bodies produce rates of growth for the turbulent core

which are higher for higher Mach numbers and hotter viscous cores.

The effects of both Mach number and enthalpies prevailing at the neck
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are cancelled out a few hundred diameters downstream, where the core

grows with the 1/3 power of distance multiplied by the drag coefficient

and the cross section.

2. Blunted cones produce growths with more irregularities be-

cause this geometry creates overexpansions and recompressions.

3. The level of enthalpies at the neck for all bodies flying at

the same altitude and Mach number is of the same order of magnitude

(smaller for slender bodies after allowance is made for boundary-layer

effects), but the decay of the enthalpy along the axis of the wake is

faster for a cone than for a blunted body, even when both cone and

blunted body may have the same total drag coefficient.
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Appendix A

CAUATION OF MHE VMOCITY ZPEVAILIN AT THE POINT ON THE
AXIS WHM THE PRESSUR IS AL.ST AMBIENT IN

THE INVISCID WAKE OF A BLUNT BODY

In Ref. 1 it was shown that the value of the enthalpy on the

axis of the wake of a blunt body and at the distance x0 where the

pressure is ambient is given as

h (0) (

h- .(Y y+ Y (I)~ LA

It was also shown that, independent of Mach number, YL & 1.2. It is

easy to see that the quantity in brackets in Eq. (A-I) is very close

to one. Hence

Y - / (A-2)h,

Assming conservation of the stagnation enthalpy, we can show that ( 1 )

21[ h xo(O) 1(
2 2 II - 1] A3

(Y -)Mz [h.

Comparing the last two equations, we find

f2 l- 1 A. 1.1

M

or

f ,. x ._(A-4)
Fm/
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This relation shows that f is highly insensitive to variations in

Mach number. Some values are computed in the following table:

M 0f

15 ........ 0.73
15 .... o.... 0.77

20 ........ 0.80
25 ........ O.81
30 ........ 0.82
35 ........ 0.83
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Appendix B

INFLUENCE OF THE LAMINAR COOLING AT THE FRONT
OF THE TURBULENT WAKE

From Ref. 1 it is found that

+ " 4 -

h(o.X) 1 0))

h(o~o) ); e (B-1)il )
where

x/ro  P.Ur o
X= with Re P (B-2)

Let us choose

P/110 2, f " 0.8, Pr 0.7, o0 CD

Then the above becomes

__~) Re)

h(oo) + E 
(B

( D Re,

Using the approximation e- x 2 '" (I + x2) " 1 , which is compatible with

Eq. (10) and the findings of Ref. 1,
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h o (B-4)
h(oo) 2 1 +R

CU1 )( +) ReC D

CD Re/)

The last term in the denominator can be neglected if

12x << R2  
(B-5)

Re CD

m3
Now at large x we have x : 2R3 (see Fig. 3); hence the above yields

2 -<2/3

Re CD

or

1 (ReC 
D

x< ! 29) (B-6)

From the data of Ref. 8 the minimum Reynolds number of all ex-

periments reported is approximately equal to 10 4. Setting CD = 1.0

we find

x 4 29--/ 8.5 x 106 (B-7)

This is indeed a very high number.
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Appendix C

EVALUATION OF THE FUNCTIONS A AND CD f IN

TERMS OF THE HOWARTH VARIABLE R

The total drag at any given distance downstream x, associated

with the turbulent core only, is

(Drag)f = 2r rf Pu(u - uf) rdr (C-1)
0

Through Eqs. (16), (19), and (20), the above becomes

TrhA(R) r2o(RT ) 2  f

(Drag)f 2 (C-2)

We define a local drag coefficient CD as

C D (Drag)f (C-3)
f rrr 1

2 

(c-%)

Equation (C-2), after solving for A(R) and using Eq. (C-3), becomes

C p U2

A(R) f +f
A()"h.(RT f)2p f ( 2f "

Since A(R) will only be used in the neighborhood of the axis, we have

from Eq. (25)

*
Assuming uniform pressure everywhere and zero velocity com-

ponent in the radial direction.
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- 0D (~- ')i2
A(R) f2 ( 2f / (C-4)

Rf

For simplicity we assume from now on that (1 + f)/2f " 1.0.

Let us assume, for the Duruoses of this Appendix only, that the

enthalpy distribution, which includes an equivalent drag coefficient

(C Dfi) within the distance Rfi, is given by the relation

MR) -R 2/0
h(R =o) e

We set

2

CD F eR dR (C-5)

It is obvious that as R - C , C. as it should. Integration

yields

CDf -e

CD

For small Rf we have*

CDf - = 2

* 2 +fR2

Note that the approximation e x - 1/(1 + x 2 ) is2good for almost

all values of x between zero and infinity, whereas e x =" I - x2 ob-

viously is limited to values of x that are very small compared to one.
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Now when R-M 1 fi CD fUC D i; hence

-:- (C-6)
C D C-- 1) Rf1 2 + R2

For blunt bodies for which C D > C D fi, the above simplifies to

CUD CD
CDI - (C-7)

DL +

D fi D
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Appendix D

CALCULATION OF r IN TERMS OF THE H)WARTH VARIABLE R
FOR BLUNT BODIES

The Howarth variable R is defined as

P.RdR - prdr

Assuming an ideal gas, the above is written as

2 -h -2
P h- dR2  dr
p h.

Through Eq. (10), this reduces to

d-2 P + H \dR2
1+-

If we assume the pressure p to be constant for all R, the above in-

tegrates to

r 2 -i -- + H n
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Appendix K

STUDY OF THE FUNCTION r f(x) F01 DIIIFFINT MACH NUMBERS AND

DII IM -f PeNHAL? X ?UVAILING AT THE
CENTER OT E CK 0F A BLUNT BODY

Figures E-1 through E-6 show the function rf(x) for Mach numbers

5, 7, 10, 13, 19, and 25. For each Mach number, the value of the

parameter R 2 /C which depends only on the percentage X of the stag-

nation enthalpy prevailing at the center of the neck according to Eq.

(35), has been set equal to 3, 4, 6, 8, 10, and 12.
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Appendix P

APPROXIMATION OF EQ. (39) WTH EO. (44)

We need only to make

M2sn2o >> 2 _
y -1

because we satisfy simultaneously the condition

12sin20 >> Y - I (F-2)
2Y

The above statement follows from the inequality

2__ > N " (F-3)
'Y - 1 2Y

which holds if

34 -8 < Y < 3 +48 (F-4)

The above is always true.

Romig in Ref. 11 has found for conical flows allowing for dis-

sociation the approximation

M sinO 1 0.39 + 1.03 i sin c (F-5)

In the above, 4 is a reference Mach number defined by the relation

SM (F-6)

with TR - 491.7 0K. and Y the angle between the cone axis and the cone

surface.
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Making T 0 " TR and using Eq. (F-5) in (F-1) we find after some

algebra that inequality (F-1) is equivalent to

M sin O >> 1.37 0.38 (F-7)

for Y - 1.4 the above becomes

H sin r >> 1.80 (F-8)

As an example, for a 20-deg cone H >> 5.25, and for a 10-deg cone

H >> 10.4.
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